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The saturation of Lp-approximation of Hermite�Feje� r interpolation based on the
zeros of generalized Jacobi polynomials is considered. Although mean convergence
may improve the approximation order compared to uniform convergence, sur-
prisingly, their saturation orders are exactly same, that is, 1�n. An inverse theorem
is also given with respect to Lp-approximation of Hermite�Feje� r interpolation.
� 1996 Academic Press, Inc.

1. INTRODUCTION

The main purpose of this paper is to investigate the saturation problem
of weighted L p convergence of Hermite�Feje� r interpolation based on the
zeros of generalized Jacobi polynomials and the inverse problem as well.
Let

&1<xn<xn&1< } } } <x1<1

be the zeros of the generalized Jacobi polynomials which are orthogonal
with respect to a generalized Jacobi weight w :=g(x) u1(x), g\1 # L� and
u1(x) a Jacobi weight u :=(1&x): (1+x); (&1<:, ;). Given a positive
integer n and a function f, the Hermite�Feje� r interpolating polynomial
Hn( f, w, x) is defined to be the unique polynomial of degree at most 2n&1
satisfying

Hn( f, w, xk)= f (xk), k=1, ..., n,

and

H$n( f, w, xk)=0, k=1, ..., n.

article no. 0099

170
0021-9045�96 �18.00
Copyright � 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.



File: 640J 300202 . By:BV . Date:23:10:96 . Time:10:41 LOP8M. V8.0. Page 01:01
Codes: 2321 Signs: 1471 . Length: 45 pic 0 pts, 190 mm

In 1916, L. Feje� r (cf. [10, (5.8), p. 166]) proved Weierstrass' theorem
using the above interpolation in which w is taken the Chebyshev weight
v :=1�- 1&x2, that is

lim
n � �

&Hn( f, v, x)& f (x)&=0, (1.1)

for all f # C[&1, 1], where & } & denotes maximum norm on [&1, 1].
On the other hand, we know that there exists some Hermite�Feje� r inter-

polation such that

lim
n � �

&Hn( f, w, x)& f (x)&=0, (1.2)

does not hold for all f # C[&1, 1] (cf. [10, Corollary 5.3, p. 174], [12,
(14.6.17), p. 343]). This leads to consider its mean convergence. Recently,
there have been a lot of papers considering mean convergence of Hermite�
Feje� r interpolation and Hermite interpolation. For more details, see the
survey paper [11] and references therein. We would like to mention that
P. Nevai and P. Ve� rtesi [6, Theorem 5, p. 55] originally gave necessary
and sufficient conditions for Hermite�Feje� r interpolation for all continuous
functions. It has been shown that mean convergence may improve the con-
vergence behavior of Hermite�Feje� r interpolation compared to the uniform
metric.

Considering the degree of approximation, A. K. Varma and J. Prasad
[13, Theorem 1, p. 226] obtained that

&Hn( f, v, x)&f (x)&v, p�c|( f, 1�n) (1.3)

for f # C[&1, 1] and 1�p<�, where

& f &u, p :=\|
1

&1
u(x) | f (x)| p dx+

1�p

|( f, } ) the modulus of continuity and the symbol ``c'' denotes some con-
stant which is positive and independent of the variables and indices. (1.3)
implies that

&Hn( f, v, x)& f (x)&v, p�
c
n

(1.4)

for f # Lip 1.

171SATURATION PROBLEM OF Lp-APPROXIMATION



File: 640J 300203 . By:BV . Date:23:10:96 . Time:10:41 LOP8M. V8.0. Page 01:01
Codes: 2136 Signs: 1219 . Length: 45 pic 0 pts, 190 mm

It should be mentioned (cf. [11, (3.10), p. 14] and references therein)
that |( f, 1�n) in (1.3) can be replaced by the Ditzian�Totik modulus of
continuity, that is,

&Hn( f, v, x)& f (x)&v, p�c|.( f, 1�n), (1.5)

where

|.( f, t) := sup
0<h�t " f \x+

h
2

.(x)+&f \x&
h
2

.(x)+" ,

the Ditzian�Totik modulus.
On the other hand, if f # Lip 1, then

&Hn( f, v, x)& f (x)&=O \ln n
n + , (1.6)

and the order cannot be improved (cf. [1, Theorem 1, p. 77] or [11,
Theorem 5.1, p. 168]). Thus, mean convergence may improve the approxi-
mation order compared to the uniform metric. Moreover, we have recently
shown [4, Theorem 1, p. 267] that even if f is a polynomial, the corre-
sponding asymptotic rate of Hn( f, v, x) is just 1�n with respect to weighted
L2 convergence.

This leads us to raise the following questions:

(1) Does

&Hn( f, w, x)& f (x)&u, p=o(n&1) (n � �) (1.7)

hold? This is related to the so-called saturation problem.

(2) May we deduce function properties from the Lp-approximation
order with respect to Hermite�Feje� r interpolation? This is related to the
inverse problem of approximation.

This paper will consider the above problems. In order to state the corre-
sponding results, we also introduce the notations.

& f&u, p :=\|
1

&1
u(x) | f (x)| p dx+

1�p

and

&f&Lp(D) :=\|D
| f (x)| p dx+

1�p
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and

& f&Lp
u(D) :=\|D

u(x) | f (x)| p dx+
1�p

where D/(&1, 1). Now,

0.( f, t)u, p := sup
<h�t

&2h. f &Lp
u(Ih)

= sup
<h�t " f \x+

h
2

.(x)+&f (x&
h
2

.(x)+"Lp
u(Ih)

,

the Ditzian�Totik weighted main-part modulus. If x\h.(x) � Ih , the expres-
sion inside & } &Lp

u(Ih) is taken to be zero, where .(x) :=- 1&x2 and
Ih :=[&1+2h2, 1&2h2].

The symbol ``t'' is used as follows: if A and B are two expressions
depending on some variabled and indices, then

AtB � |AB&1|�c and |A&1B|�c.

Now we state our results.

Theorem 1.1 Let f # C1[&1, 1], w(x) be a generalized Jacobi weight,
u(x) be a Jacobi weight, and let 1�p<�. Then

&Hn( f, w, x)& f (x)&u, p=o(n&1) (1.8)

if and only if f#constant.

Theorem 1.2 Let f # C[&1, 1] and 1�p<�. Then

&Hn( f, w, x)& f (x)&u, p=O(n&#) (0<#<1) (1.9)

implies that 0.( f, t)u, p=O(t#), and

&Hn( f, w, x)&f (x)&u, p=O(n&1) (1.10)

implies that 0.( f, t)u, p=O(t |ln t| ).

2. PROOFS

First we prove a lemma.

Lemma 2.1 If (1.8) is satisfied and 1�p<�. Then

&- 1&x2 H$n( f, w, x)&u, p=o(1). (2.1)
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Proof. For l given by l :=max[k: 2k�n], we expand Hn( f, w, x) by

Hn( f, w, x)&H1( f, w, x)=(Hn( f, w, x)&H2l ( f, w, x))

+(H2l ( f, w, x)&H2l&1( f, w, x))+ } } } +(H2( f, w, x)&H1( f, w, x)).

If m<n, from (1.8) we have

&Hn( f, w, x)&Hm( f, w, x)&u, p=o \ 1
m+ .

Note that for a polynomial pn(x) of degree�n we have the following
Bernstein�Markov inequality (cf. [3, Theorem 1, p. 1478]):

&(- 1&x2)r p (r)
n (x)&u, p�cnr &pn(x)&u, p . (2.2)

Now, let r=2 and applying (2.2) we obtain

&(1&x2) H"n( f, w, x)&u, p� :
l

k=1

22ko \ 1
2k+=o \ :

l

k=0

2k+=o(n). (2.3)

On the other hand, we have (cf. [5, Theorem 6.3.14, p. 113]) that

&pn(x)&u, p�c &pn(x)&Lp
u(Dn) , (2.4)

where Dn :=[&1+cn&2, 1&cn&2].
Let x0 :=1, xn+1 :=&1, x :=cos % and xk :=cos %k . Note that (cf. [6,

Lemma 2, p. 35]) |%k&%k+1 |�c�n (k=0, 1, ..., n), hence, x1&1tn&2 and
xn+1tn&2(n � �), so that [xn , x1]tDn . Therefore, if x # [xk+1, xk],
we have

sin (%+%k)�2
sin %

t1,

so there exists N>0 such that

} x&xk

- 1&x2 }=2 } sin (%+%k)�2 sin (%&%k)�2
sin % }�c

n

for n�N and x # Dn , which guarantees x\c.(x)�2n # [&1+cn&2,
1&cn&2]. Note that H$n( f, w, xk)=0 (k=1, ..., n). Hence from (2.4) we
have
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&- 1&x2 H$n( f, w, x)&u, p�c &- 1&x2 H$n( f, w, x)&Lp
u(Dn)

=c \ :
n&1

k=1
|

xk

xk+1

u(x) }- 1&x2 |
xk

x
H"n( f, w, t) dt }

p

dx+
1�p

�c \ :
n&1

k=1
|

xk

xk+1

u(x) }- 1&x2 |
x+&c.(x)�2n

x&c.(x)�2n
|H"n( f, w, t)| dt }

p

dx+
1�p

�c "u1�p(x) - 1&x2 |
x+c.(x)�2n

x&c.(x)�2n
|H"n( f, w, t)| dt"Lp(Dn)

:=Ip . (2.5)

For p>1, the maximal function M(g) satisfies &M( g)& p�cp &g& p (cf. [7,
Theorem 1, p. 5]) and u1�p(x)- 1&x2

tu1�p(t)- 1&t2 if t # [x&c.(x)�2n,
x+c.(x)�2n]. Thus by (2.3) we obtain

Ip�
c
n "u1�p(x) (1&x2)

1
.(x)�2n |

x+c.(x)�2n

x&c.(x)�2n
|H"n( f, t)| dt"Lp(Dn)

�
c
n "

1
.(x)�2n |

x+c.(x)�2n

x&c.(x)�2n
u1�p(t) (1&t2) |H"n ( f, t)| dt"Lp(Dn)

�
c
n

&M(u1�p(t) (1&t2) H"n( f, t), x)&Lp(Dn)�
c
n

&(1&x2)H"n( f, x)&Lp
u(Dn)

�
c
n

&(1&x2)H"n( f, x)&u, p=o(n)
c
n

=o(1). (2.6)

For p=1, we have

I1=|
Dn

u(x) - 1&x2 |
x+c.(x)�2n

x&c.(x)�2n
|H"n( f, w, t)| dt dx

�c |
Dn

|
x+c.(x)�2n

x&c.(x)�2n
u(t)- 1&t2 |H"n( f, w, t)| dt dx

�c |
Dn

u(t)- 1&t2 |H"n( f, w, t)| {||x&t|<c.(x)�2n
dx= dt

�cn&1 &(1&t2) H"n( f, w, t)&u, 1=o(1). (2.7)

Lemma 2.1 follows by combining (2.5)�(2.7). K

Proof of Theorem 1.1. From (1.8) we deduce that

Hn( f, w, x)+ :
�

k=1

(H2kn( f, w, x)&H2k&1n( f, w, x))
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converges a.e. on [&1, 1]; moreover, we have

f (x)=Hn( f, w, x)+ :
�

k=1

(H2kn( f, w, x)&H2k&1n( f, w, x)) (2.8)

a.e on [&1, 1]. Thus (2.8) holds on [&1, 1]"A1 with m(A1)=0 and
A1 /[&1, 1]. On the other hand, from (2.1) we also have

0=H$n( f, w, x)+ �
�

k=1

(H$2kn( f, w, x)&H$2k&1n( f, w, x))

a.e. on [&1, 1]. That means that the subsequences [H$2kn( f, w, x)] con-
verges to 0 a.e. on [&1, 1]. There fore we obtain by applying Egoroff 's
Theorem that for any given =>0, there is a subset A2 /[&1, 1] with
m(A2)<= such that H$2kn( f, w, x) converges to 0 uniformly on [&1, 1]"A2 ,
hence together with (2.8) we conclude that f $(x)=0 on [&1, 1]"

(A1 _ A2). On the other hand, f $ # C[&1, 1] implies that f $(x) is bounded
with & f $&�M, where M is a some positive constant. Since = is arbitrary,
we have

&(1&x2) f $(x)& p
u, p

�c( p)(&(1&x2) f $ (x)& p
Lp

u([&1, 1]"(A1 _ A2))+&(1&x2) f $ (x)& p
Lp

u(A1 _ A2))

�c( p)(o(1)+M=);

this implies that f $(x)=0 a.e. on [&1, 1]. Since f $(x) is continuous, there-
fore we have f (x)#constant.

Note that Hn(1, w, x)#1, so the converse statement is trivial. K

Proof of Theorem 1.2. We just prove (1.9). (1.10) can be proved by
similar argument. Define a main-part K-functional:

K.( f, t)u, p := sup
0<h�t

inf
g

[& f&g&Lp
u(Ih)+t &.g$&Lp

u(Ih) | g # A.C.(Ih)],

where g # A.C(Ih) means that g is absolutely continuous in Ih . Then (cf. [2,
Theorem 6.1.1, p. 56]) we have

&2h. f &Lp
u(Ih)�cK.( f, t)u, p

�c sup
{�h

inf
l

(& f (x)&H2l ( f, w, x)&u, p+{&.(x) H$2l ( f, w, x)&u, p), (2.9)

where l is taken such that 2l<1�{�2l+1.
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We write H$2l ( f, w, x)=�l&1
k=0 (H2k+1( f, w, x)&H2k( f, w, x))$; by the use

of Bernstein�Markov inequality (2.2) we have

&.(x) H$2l ( f, w, x)&u, p� :
l&1

k=0

&.(x) (H2k+1( f, w, x)&H2k( f, w, x))$&u, p

�c :
l&1

k=0

2k+1 \ 1
2k+

#

�c(#)(1+{#&1); (2.10)

combining (2.9) (2.10) and (1.9) we have 0.( f, t)u, p=O(1) t#. K

3. REMARKS

1. Recalling that & f &u, p�c & f & for 1�p<�, hence, we have by
applying Theorem 1.1 and Ho� lder inequality that

Theorem 3.1 Let f # C1[&1, 1], and w(x) be a generalized Jacobi
weight. Then

&Hn( f, w, x)& f (x)&=o(n&1) (0.0)

if and only if f (x)#constant.

For the case w(x)=v(x), (3.1) is the result of J. Szabados [8, Theorem 3,
p. 405]. Thus, we generalize his result. For the further studying of the
saturation in the maximum norm, see [9, Theorem 1, p. 463] and referen-
ces therein. Combining Theorem 1.1 and Theorem 3.1, we conclude that
the saturation order of mean convergence of Hermite�Feje� r interpolation is
exactly same as that of uniform metric.

2. From (1.5) we obtain that

&Hn( f, v, x)& f (x)&v, p=O(n&1) (3.2)

for f satisfying |.( f, t)�ct(t>0) and 1�p<�. But how to characterize
the saturation class of Hn( f, w, x) in Lp space (1�p<�) is still an open
problem.

3. For the Quasi�Hermite�Feje� r interpolation, there are similar
results which hold, we omit the details.
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